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A Comparison of Some Numerical Methods for Two-Point 
Boundary Value Problems * 

By James M. Varah 

Dedicated to the memory of G. Immerzeel 

Abstract. In this paper we discuss and compare two useful variable mesh schemes for linear 
second-order two-point boundary value problems: the midpoint rule and collocation with 
cubic Hermite functions. We analyze the stability of the block-tridiagonal factorization for 
solving the linear systems, compare the amount of computer time required, and test the 
methods on some particular numerical problems. 

1. Introduction. Recently, there has been a great deal of interest in "global" 
methods for the numerical solution of two-point boundary value problems. By this, 
we mean methods which find a solution of the form 

N 

(1 .1l) U (x) E a, By (x), j=1 

where the {+>(x)} are piecewise polynomials. Most of the work reported on these 
methods deals with the theoretical aspects, and it is our purpose here to report on 
the computational aspects, in particular, to compare the most economical computa- 
tional versions of these methods with appropriate finite-difference methods. This is 
not meant to be an all-encompassing survey; rather, a comparison between some 
computationally feasible schemes on the same problems. 

We will fix our attention on the linear second-order equation 

(1.2) Ly y" + p(x)y' + q(x)y = f (x), 

ay(a) + /3y'(a) = go, a'y(b) + /'y'(b) = g1. 

Define the mesh partition a x0 <x1 < ... < xm = b, and let h maxxix+ 1 - xi. 
Of the global methods, the most attractive computationally is the collocation method 
since no quadrature sums are required (see [7] for a detailed comparison). In particular, 
deBoor and Swartz [2] have shown that collocation at the two Gaussian points within 
each interval (xi, xi+ 1) with piecewise Hermite polynomials of degree 3 gives a method 
of order 4. This defines the coefficients {aj} in (1.1) by the linear system 

Lu(N)(ij) = f( ,), i = 1, .. , m,j = 1, 2, 

where (il, 62 denote the two Gaussian points in (xi-,, xi). 
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The corresponding finite-difference method used should have the same versatil- 
ity and accuracy; thus, we will use the well-known midpoint rule popularized by 
Keller [4]. This is second-order accurate for any mesh partition, and can be 
extended to a method of order 4 by one extrapolation. This method is normally 
derived from finite-difference equations, but, in Section 2, we will show that it is 
equivalent to a particular discrete Galerkin method. 

Both these methods are O(h4) and both solve explicitly for approximations to 
{u(x), u'(xi)}, i = 0, ..., m, if we use a natural basis for the cubic Hermite 
polynomials. In Section 3, we discuss the form of the linear systems generated by 
these methods, and their solution via block-tridiagonal factorization. In particular, 
we show that the factorization is stable without pivoting. Then, in Section 4, we 
compare the amount of work required to set up and solve these systems, and also 
compare collocation with higher-order piecewise polynomials and more extrapola- 
tions of the midpoint rule. Finally, in Section 5, we give some results for the O(h4) 
methods on some particular numerical examples. 

Both of these methods (collocation and midpoint rule) can be used on more 
complicated problems, e.g. first-order systems of two-point boundary value prob- 
lems, and nonlinear problems, but we feel that this would not change the 
comparison greatly. 

2. The Midpoint Rule as a Global Method. The midpoint rule is usually defined 
for a first-order system of equations (see Keller [4]). In this form, it is easily seen as 
a collocation method for the system using piecewise linear functions (see Russell 
[5]). However, for our Eq. (1.2), it can also be viewed as a discrete Galerkin method. 
Consider (1.2) in selfadjoint form with homogeneous boundary conditions: 

(r(x)u')' - s(x)u = f, 

u(a) = u(b) = 0. 

Then the midpoint rule is defined by first forming the equivalent first-order system 

u' = v/r, 
(2.1) 

v' = su +, 

and then differencing across each mesh interval and averaging, so the approxima- 
tion is second-order accurate. This gives 

uj = u jl 2rj-1 (v1 k) 

hj i = I{ + fsSj- 12 (Uj + Uj-) +hf-1/2 

forj = 1, ..., m, and, of course, uO = um = 0. Here uj = u(xj), h = xj-xj-, and 

ri-1,2 = r(x- hj/2). Although this is a finite-difference method, we can consider it 
a global method if (for example) we let the {uj, be the coefficients of a piecewise 
linear or "roof function" expansion. (Indeed, for the original formulation (1.2), the 
{us,} and {v,} together can be considered as the coefficients of a piecewise cubic 
Hermite polynomial basis; we will use this fact later.) Now, consider the Ritz- 
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Galerkin method for (2.1). This finds as a solution, U(N) = E cgjk(x), where the 
coefficients {c1} satisfy 

Ac = b, 

(2.3) a1=- fb (rfpP + sf+,)dx, bi = ff dx. 

Of course, these matrix elements cannot be evaluated exactly; instead, some 
quadrature rule is applied, giving a discrete Galerkin method. 

THEOREM 2.1. The values {uj} obtainedfrom the midpoint rule (2.2) are precisely the 
coefficients {cj} obtainedfrom the Galerkin method (2.3) using the midpoint quadrature 
rule on piecewise linear functions. 

Proof. First, consider the discrete Galerkin method. Since (i (x) is the normalized 
piecewise linear function with support in [xi-1, xi+, ], it is easy to see that the 
midpoint quadrature rule gives 

-a< = );+1/2 
+ t-1/2 + hj+l51S+1/2 + 

h sj-1/2 
_,& hj+. hj 4 4 

(2.4) ajj+1 =I +/ - 2 _ 
h+1S2, a-,_, X-12 _ h 

-j-1/ 
hj1 4 5i ~hj 4~-12 

bj = 
h. 

f- 1/2 +h+ '2 +1/2 + 2 

Note that A is symmetric and tridiagonal. 
Now consider the midpoint rule (2.2). To get an expression involving only {uj}, 

use the first of these equations to define vj+1: 

Vj+= -vj + 2+1/2(U+ - u>) 

1rj-1/2 - u) + /2 (Uj+-U) 
- ,~(Uju, h+ 1 (u1-u) 

Now, if we add the second equation of (2.2) with indices j, j + 1, we obtain 

2-h sk/2jr 2hs+1"u hi+lsu 

-Sj1/2 Uji ( -( 1Sj_/2 
+ / Sj+2 - U 2Sj+1/2UJ+l + (vj+1 - Uj-) 

= hj_1l12 +h,+lf+112. 

Now, substitute for (vj+l- vj-V) from above, and we have 

( 2r -/2 _ hj 
Sj- 1/2 )Uj I _ ( 2rj-i/2 + h + jSj- 1/2 + j2 iS+1/2 )uj 

+ ( h+112- _2+1 SJ+1/2 Uj+1= hjhlf/2 +hJ+lf+112 

But this is precisely (2.4) multiplied by 2. Moreover, the boundary conditions are 
UO = um = 0 for both schemes, so the {uj) and {cj, are identical. Q.E.D. 
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Notice that, although the form (2.4) gives a symmetric tridiagonal matrix, it is 
much more work to set up this linear system than the original midpoint rule (2.2). 
Perhaps other Galerkin schemes could be similarly economized by rearrangement 
of the linear system. 

3. Solution of the Linear Systems. The collocation method, using piecewise cubic 
Hermite polynomials with natural basis and collocating at the two Gaussian points 
in each subinterval, gives a linear system of the form 

6 0 

(3.1) * 

FMG 

Go, 

where all blocks are 2 x 2 except Fo and Go (1 x 2). Of course, the midpoint rule 
gives a system of exactly the same form. An effective way of solving this system is 
by block-tridiagonal factorization; i.e., we put the matrix into the form 

Bo Co 
Al B1 

A * *Cm- 

A m Bm 

where each block is 2 x 2, and use the iteration 

UO = Bo, 

(3.2) L,=AiU, --. 

Ui =: Bi -L, Ci-1, 

to form a block-LU factorization. Then, we solve the linear system by a forward and 
backward substitution with 2 x 2 blocks. 

Just as with the normal LU decomposition, we must ensure that this block-LU 
Factorization is stable, i.e. Li 11H H U, | U K. Since we can rewrite (3.2) as 

UO = Bo, 
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this is equivalent to K(ui) = || U || || U,-LJ1 | _ K. 
Conditions for stability were given in [9, Theorem 2.2]; unfortunately, these 

conditions do not hold here, so we must examine the iteration more closely. 
Assume now that the problem (1.2) has constant coefficients (i.e., p(x) = q(x) 

- 0) and uniform mesh h. Then both systems have the block-tridiagonal form 

U0 C 0 

(3.3) A B 
A 0 

0 

with A = (0ala) C = (?) B - (b b2) 

LEMMA 3.1. The block-tridiagonal factorization (3.2) with a matrix of form (3.3) 
gives explicitly Ui = ( a,3,,) with 

b3 b, 

a1,+ = bli + cl (e - l/r,), 13i+1 = b2 + c2 (e - l/r,), 

where 

ri = K'(ro + L/(a - 1)) - L/(a - 1) (if K # 1) 

= ro + iL (if K= 1) 

and 

dil/d2-e L 1 1 K , r 
d4/d2 + e' d4/d2 + e ? e + (a2ao - a, go)/(b4ao - b4/30) 

e is either root of e2d2 + e(d4- d1) + d3 = 0, and 

b1 b2 b3 b4_ a, a2 a, a2 
dl = | b | d2 = |3 4, d3 = |b b| d4 =| 2- b3 b4' 2 

C1 C2~ 3 b1 b2' d 
C= C 

Proof. The ith step of iteration (3.2) applied to (3.3) is U1+j = B - A U,-1 C giving 
i+j = (a'bib+3) with a,+, = b- c16/-Y, I3,+i = -c261/Yi, where 6i = a2ai 

-a1 fi, ay, = b4ai - b3 Pif. Of course, this is a nonlinear iteration for a,, fPi, but we 
can express the iteration in terms of 8i, -y.: 

,+1 = -d3 + d4 8i/y1, y,+I = di + d2 6/y1i. 

This is still nonlinear, but if we define the new variable r, = l/(e + 6,/-yi), for e a 
constant, we obtain 

di + d2 6,1/yi 

= ed1 - d3 + (ed2 + d4)8i/7, 

Now, if e is defined as in the statement of the lemma, 
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d1 + d26 /yiYi d1 + d2(e + 6i/yi) - d2e 
ii = Kri + L, 

(ed2 + d4)(e + 6,/yE) (ed2 + d4)(e + &|yi) 

with K, L as given above. This is linear, and hence 

ri = Ki(ro + L/(a - 1)) - L/(a - 1), if K # 1, 

=ro+iL, if K= 1. 

The expressions for a,+1, /3i+, then follow easily. Q.E.D. 
Now, to show stability of the block-tridiagonal factorization, we need only show 

that the {tai}, {/,} remain bounded and ail//3i * b3/b4 (i.e., det (U1) # 0). First, 
consider the midpoint rule. For our Eq. (1.2), the midpoint rule is 

Uj- = h1(vj + vj- 1)/2, 

(3.4) V1 - vI - -hJp(xj-1/2)(vI + vl)/2 - hjq(xj-1/2) (uj + u-1)/2 

+ hif(Xj_ /2) 

which for p = q = 0 and constant h gives the linear system 

ah 0 0 
2 Q 

0 

(3.5) 0- - I ; 1 

0 0 1 1 

0 0 

after multiplying the even rows by -2/h and the odd columns by h/2. 
COROLLARY 3.2. Consider the midpoint rule applied to the constant coefficient 

problem 

Y" =f (A) 

ay(a) + Py'(a) - go, 

a'y(b) + /'y'(b) =g 

with constant mesh size h. 
(i) If /3/8a c 0, the block-tridiagonal factorization (3.2) is stable for all h; in fact, 

-1 < i c< 0 1 < /i c< 2. 
(ii) If 8/3a > 0, the factorization is unstable for certain values of h. 
Proof. Lemma 3.1 applied to (3.5) gives 
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ri = - + 2:/3ha - 2i, 

ail = l/ri, /3i+1 = 1 - l/ri. 

If /3/a < 0, ri stays bounded away from zero for all h, so the {ai} and { /3i} remain 
bounded as above. In this case, this ensures stability because -det(U1) = /3, - a 
=1, so II Ui-' I 11 Ui I11 ' 3. Note also that if a = 0, then ai = 0, /,i = 1 for all i. 

However, if 8/3a > 0, we have ri = 0 if h = 8/3a(i + 1/2) for some i, in which case 
the factorization is unstable and, in fact, breaks down. Q.E.D. 

Now consider the collocation scheme on the same constant coefficient problem. 
Recall the mesh a = xo < x < ... < xm = b, and recall that we must collocate 
at two points (ul, i2 in each interval (xi--,, xi). Let the points be placed symmetrically 
in the interval at ((xi-l + xi)/2) ? p((xi - xi-)/2), with 0 < p < 1 (for Gaussian 
points, p = 1/V\3). Then the linear system to solve is 

, 0 0 

(3.6) 0'0'Q 2) 0'I(Q1 2) 0'2(Q1 2) 0'3'Q1 2) 0 0 

0 0 2(Q2 1) 3(Q2 1) '4(Q2 1) 0(2 1) 

The {fi(x)} are the usual natural basis for cubic Hermite polynomials (see Schultz 
[8, p. 27]). Thus, 02i, k2i+1 have support (xii1,xi+l) and +2l(xi) = 1, 02i+1(xi) = 1. If 
we scale successive columns by multiplying by h2, h respectively, the matrix (3.6) 
becomes 

oa h2 :h 0 0 Q 

- 6p - l -3p 6p I - 3p 

6p 3p-l -6p 1 +3p 

o 0 - 6p -l -3p 

00 

0~~~~~~~~ 

Moreover, it simplifies the stability analysis if we divide successive columns by 
(-6p), -1 - 3p; then the collocation matrix becomes 
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ah _ _ _0 0 
6p l+3p ( 

1 1 -1 a . 

(3.7) -1 -a -1 

0 0 1 1 0 

w 2~~~~~~~~~~~ where a = (3p - 1)/(3p + 1). Since 0 < p < 1,-1 < a < I and for the Gaussian 
points, a 2 - V3. 

COROLLARY 3.3. Consider the cubic Hermite collocation scheme applied to the 
constant coefficient problem 

y" =f(x), 

ay(a) + /3y'(a) = go, 

a'y(b) + 3'y'(b) =g 

with constant mesh size h, with collocation at symmetric points in each subinterval. 
(i) If /3/a ?e 0, the block-tridiagonalfactorization is stable for all h; in fact, 

0 ai a< 1- a, 

a - I 8 i -< a I - f/ (I - a), if a ' O 

af-1-(/(I1-a)-pina-<or 1, if at 0. 

(ii) If ,8/a > 0, the factorization is unstable for certain values of h. 

Proof. Applying Lemma 3.1 to (3.7), we obtain 

1 - 6p,8/ha(1 + 3p) + i(1 + a) 
ri- ~ 1-aJ - 

,+= /r, 1 i+= a - 1 - a/ri. 

RecallO<p < 1,-I <a< .If8// a 0,then 1/(1-u) <ri< cc,givingthe 
bounds on ai, /3i as above. Again, we need only ensure the boundedness of 
(ai), {f31}. Also, if a = 0, ai - 0, /3i = a - 1 for all i. However, if 8/3a > 0, ri = 0 
possibly for certain values of h and i in which case the factorization is unstable. 
Q.E.D. 

Of course, the above analysis only shows that the block-tridiagonal factorization 
is stable for constant coefficients and constant h; however, a similar analysis could 
probably be done for variable h, and the bounds may involve the mesh ratios. Also, 
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for variable coefficients, the matrix elements only change by 0(h). In any case, the 
stability can be monitored during the decomposition and if the intermediate 
HLi I 1, I U. Il become too large, one can shift to a partial pivoting routine. 

4. Work Estimates. Now let us compare the work required (we measure this in 
units of M, the average time for a multiplication or division) for the two 0(h4) 
schemes. For our problem, (1.2) and the given mesh a = x0 < xl < ... < xm = b, 
both schemes give a matrix of the form (3.1). The collocation scheme has the general 
matrix element 

(4.1) Loj(0i = 0j'(0i +P A,)0j(Qi) + q((i)+(Pji) 

where the {fj) are the natural basis for cubic Hermite polynomials. Recall from 
Section 3 that, for stability of the matrix factorization, we must scale by dividing 
successive columns of the matrix by h],, hj. Now, we can assume that the constants 
used in the evaluation of f(pi), 0jti), j,"(ti) are done beforehand, so each element 
(4.1) takes 4M (i.e., 4 multiplications/divisions). Also let E denote the time required 
for evaluating p(x), q(x), and f(x) at some point. Then the total setup time for the 
collocation matrix is (4M)(8m) + (2m)E. Moreover, the matrix elements have no 
fixed value; this will make a difference later when we discuss the work required to 
solve the system. 

For the midpoint rule, the matrix elements are much easier to evaluate; if we 
scale as in Section 3 (i.e., multiply row 2j by -2/hj, column 2j - 1 by hj2), we have, 
using the notation of (3.1), 

j 
(h q(X, l/2) -1 + hP(Xj-/2)) 

(4.2) (- hj + I/hj 1 
G= 1hjhj~ hII 

(4.2) ( i~~~~i q(x,-,l/) 
I + 

hjP(Xj-11211 

Fo = (Ah2p) Go ( 
a 'hm ) 

If we store the terms involving only the mesh sizes, the total setup time is 
(3M + E)m. 

Now, consider solving these systems by block-tridiagonal factorization (3.2). 
The relevant operations are as follows, where we assume arbitrary elements for the 
collocation matrix but use the ones appearing in the midpoint matrix (4.2): 

collocation midpoint rule 

solve L,(U,-1) = Ai 6M 2M 

form U, = Bi- L, C_1 2M 1M 

solve Liyi- I + Yj = fi 2M 2M 

solve U xi + Cxi+, = Y. 6M 3M 

total for m blocks 16Mm 8Mm 
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Of course, with the midpoint rule, we must extrapolate once to get an 0(h4) 
method; this involves placing new points at the midpoints of each subinterval, 
solving on the expanded mesh by the midpoint rule, and then forming the right 
linear combination (-3, 4) of these two solutions on the original mesh. This, of 
course, involves setting up and solving a second system of exactly double the size, 
so the time for the full 0(h4) method is (1 IM + E)3m + 2m (for the extrapolation), 
or (35M + 3E)m. For collocation, the total is (48M + 2E)m. This easily gives 

THEOREM 4.1. The midpoint rule with extrapolation is faster than collocation with 
cubic Hermite polynomials on the same mesh for problem (1.2), provided E/M < 13, 
where E/M is the number of equivalent multiplications required to evaluate p(x), q(x), 
and f (x). 

Notice that because three evaluations of the coefficient functions in each 
subinterval are required for the midpoint rule, and only two for collocation, the 
collocation scheme is cheaper except for quite simple functions. 

Note. Recently, G. Immerzeel has observed that if the trapezoidal method of aver- 
aging is used instead of the midpoint rule (see [4, p. 15]), then one extrapolation again 
gives a fourth-order method, but the number of evaluations is reduced to two per interval, 
the same as collocation, and the number of multiplications is not increased. So this meth- 
od (which has almost identical error properties as the midpoint rule) is always cheaper 
than collocation. 

Another appropriate comparison of higher-order methods involves collocation 
with higher degree piecewise polynomials and more extrapolations of the midpoint 
rule. DeBoor and Swartz [2] show that using piecewise polynomials of degree 
2n - 1, which are only CMl) at the mesh points, and collocating at the 2n - 2 Gauss 
points in each subinterval gives a method of order 4n - 4 at the mesh points. Even 
though such a method is only practical for small values of n, we can compare the 
work required with the correspondingly accurate method obtained by extrapolating 
the midpoint rule. 

First, consider the midpoint rule: for a method of order 4n - 4 at the basic mesh 
points, we need to extrapolate 2n - 3 times. Normally (see Keller [4]), this is done 
by subdividing each hi into hi/2, hi/4, hi/8, .... However, this quickly involves too 
many points. Here, we propose the sequence hi/2, hi/3, hi/4, .... This sequence has 
not been used even for extrapolation with initial value problems because of the 
possible unlimited growth of the roundoff error (see Gragg [3]). However, experi- 
ments of G. Immerzeel have shown that this roundoff error growth is not large in 
the range of practical computation (10 or 12 extrapolations). For this sequence, we 
must set up and solve midpoint rule systems like (4.2) with m, 2m, 3m, . .. , pm 
blocks, where we define p = 2n - 2. Proceeding as with the 0(h4) method, we see 
the total time required is 

(4.3) [11P( 1 1) + 2p(p7 l)]mM + AP 1)mE. 

The collocation method, on the other hand, requires only one solution of a 
larger system; we have (2n - 2) basis functions at each of the (m - 1) interior 
nodes and n at each endpoint, giving # unknowns = 2n + (m - 1)(2n - 2). 
Similarly, there are (2n - 2) collocation equations for each of the m intervals, which 
together with the boundary conditions give m(2n - 2) + 2 equations. Because the 
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basis functions have support over only two intervals, the linear system is again of 
the form (3.1) with Fj and Gi p x p, except F0 and Go which are 1 x n and F; and 
Gm (p x n). Now, the block-tridiagonal factorization has the first and last diagonal 
blocks n X n, and the rest p X p. 

We again assume the basis functions have been evaluated beforehand, so the 
total setup time for each matrix element is 4M. Also, we assume the block- 
tridiagonal factorization is stable; then we find (as in [9, p. 867] with q = p72) the 
solution time is (13p3/l12 + 2p2 - p/3)mM. Here, unlike [9], we have included the 
lower-order terms since we are interested in small values of p. Thus, the total time 
for collocation is 

(4.4) (1j3 p3 + l0p2 - P)mM + pmE. 

Comparing (4.3) and (4.4), we obtain easily 
THEOREM 4.2. Extrapolation with the midpoint rule is faster than the above 

described collocation procedure of order 4n - 4 when E/M < 13n/3 + 29/6. 
Notice that again the outcome depends on how complex the functions p(x), 

q(x), f (x) are. The more accuracy desired however, the more attractive extrapola- 
tion appears. Also, the extrapolation procedure is much easier to program. 

5. Numerical Examples. Here, we will report the results of the two 0(h4) schemes 
on some test problems. It is not our purpose to obtain extremely high accuracy even 
though this is certainly possible; rather, we are interested in reasonable accuracy (3 
or 4 significant figures) with a small number of mesh points. Each example is of the 
form (1.2) on the mesh a = xo <xi < ... < xm = b. For each example, we give 
the interior mesh points used (xi, ... ,xm ). Since both collocation with cubic 
Hermite polynomials (denoted CH3) and the midpoint rule with one extrapolation 
(denoted M + E) provide approximations to the solution and its first derivative at 
the mesh points, it is natural to use the uniquely defined piecewise cubic Hermite 
polynomial as the global solution and then measure the maximum error between 
this function and the true solution over the whole interval. We give this error for 
CH3 and M + E, and also for the cubic Hermite interpolate of the exact solution 
at the same mesh points (denoted INT). We give this last error for reference: we 
can hardly expect the approximate solution to give results better than interpolating 
the exact solution! We could also give first derivative errors, but, in all cases, they 
were no larger than a factor of 10. 

Example 1. 

y" + (2yx)y' + 2-yy = 0, exact solution. 
2 

Y(O) = 1, y(l) e-, y = e-ex 

y m interior mesh points INT CH3 M + E 

10 5 .2, .4, .6, .8 .0029 .0036 .0025 

10 5 .137, .302, .457, .703 .0008 .0028 .0027 

20 5 .2, .4, .6, .8 .0063 .0102 .0054 

20 5 .107, .234, .327, .561 .0014 .0049 .0051 



754 JAMES M. VARAH 

Example 2. 

y" + (3 cot x + 2 tan x)y' + yy = 0, 

y(a) = go, y(b) = gi (O < a < b < r/2). 

This has the Fourier series solution y(x) = akCoSkX, with 

ak+2 ((k(k + 1) - y)(k- 1) (k + 2))ak, 

al = 0, and ao, a3 determined by the boundary conditions. (For y = 2 and the proper 
boundary conditions, y(x) = csc2x.) This is almost the same as Problem 2 of Russell and 
Shampine [6] except they measure x in degrees not radians. With a = 300, b = 600, 

g0 = 0 g1 = 5, y = 0.7, their solution has a sharp rise near x = a (this can be predicted 
if their problem is converted to radians; then there is a small constant (in/180)2 in the 
y" term). 

With x in radians and the same boundary conditions, the solution rises slowly 
from 0 at x = g/6 to 5 at x = q7/3. The errors are as follows: 

y m interior mesh points INT CH3 M + E 

0.7 5 67/30, 77T/30, 87T/30, 97T/30 .0026 .0024 .0023 

A harder example is the same problem from a = in/18 (I0?) to b = 8vn/18 (800). 

This has a sharp rise near x = a. 

y m interior mesh points INT CH3 M + E 

0.7 5 130, 170, 270, 500 .021 .016 .015 

Example 3. 

y - (2 - x2)y -1, y'(O) = y(l) = 0. 

This is the right half of the singular perturbation problem discussed by Carrier [1] 
and also used in [6]. 

E m interior mesh points INT CH3 M + E 

.01 5 .3, .6, .8, .9 .002 .0024 .0023 

.0001 5 .4, .85, .96, .99 .020 .015 .21 

.0001 7 .3, 6, .85, .95, .97, .99 .006 .008 .042 

Notice that, for a small e, the midpoint rule gives inferior results; this is because 
the first derivative is poorly approximated, particularly with only a few mesh points. 
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